The Mathematical Constant e

The number e is of eminent importance in mathematics, alongside $0,1, \pi$ and i. All five of these numbers play important and recurring roles across mathematics. Like π, e is an irrational number. The value e can be defined a number of ways. We will use the following definition:

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

n	e
1	
5	
10	
100	
1000	
etc.	

By substituting increasing values of n, we can see that the value of e appears to be approximately equal to \qquad .

Using a calculator, we can see that the value of e evaluated to 5 decimal places is \qquad .

- Logarithms with base e are referred to as "natural logarithms" and we write $\ln x$ which means $\log _{e} x$.
- Note that the laws of logarithms also apply to natural logarithms.

Example 1: Compare the Graphs of $y=e^{x}$ to $y=2^{x}$ and $y=\ln x$ to $y=\log _{2} x$

Label each function below with the appropriate equation.

Example 2: Identify Characteristics of Graphs of Natural Logarithmic Functions

Identify the following characteristics of the graph of each function:
i. the equation of the asymptote
ii. the domain and range
iii. the y-intercept (to one decimal place)
iv. the x-intercept (to one decimal place)
a. $\quad y=\ln (x-5)-4$
b. $y=\ln (-(x-3))+1$

Solution:

a. $y=\ln (x-5)-4$
i) Visualize the transformations of the graph of $y=\ln x$:

The graph of $y=\ln x$ has been \qquad .

Therefore the equation of the \qquad asymptote is \qquad .
ii) Domain: \qquad Range: \qquad
iii) y-intercept: \qquad
iv) x-intercept: \qquad
b. $y=\ln (-(x-3))+1$
i) Visualize the transformations of the graph of $y=\ln x$:

The graph of $y=\ln x$ has been \qquad .

Therefore the equation of the \qquad asymptote is \qquad .
ii) Domain: \qquad Range: \qquad
iii) y-intercept: \qquad
iv) x-intercept: \qquad

Example 3: Evaluate Expressions Containing Natural Logarithms

Evaluate each expression.
a. $4 \ln e+5 \ln 1-\ln e^{3}$
b. $e^{\ln 12-3 \ln 2}$

Solution:
a. $4 \ln e+5 \ln 1-\ln e^{3}$
b. $e^{\ln 12-3 \ln 2}$

Example 4: Solve Natural Logarithmic Equations

Solve the following equations.
a. $\ln x=2 \ln 4+\ln 3$
b. $3 \ln 2 x+4=10$
c. $6+5 e^{2 x}=21$
d. $\log _{2} e^{-4 x}=5$

Solution:

$\ln x=2 \ln 4+\ln 3$	$3 \ln 2 x+4=10$	$6+5 e^{2 x}=21$	$\log _{2} e^{-4 x}=5$

Example 5: Solve a Problem Using Natural Logarithms

The temperature, T , in degrees Celsius, of a cup of hot chocolate t minutes after it is made is given by the equation $T(t)=92 e^{-0.06 t}$.
a. Calculate the temperature of the hot chocolate 8 minutes after it is poured.
b. How long will it take the hot chocolate to cool to $50^{\circ} \mathrm{C}$?

Solution:

a. Substitute $\mathrm{t}=8$ into the equation and solve for T .
b. Substitute $T=50$ into the equation and solve for t.

