The Mathematical Constant e

The number *e* is of eminent importance in mathematics, alongside 0, 1, π and *i*. All five of these numbers play important and recurring roles across mathematics. Like π , *e* is an irrational number. The value *e* can be defined a number of ways. We will use the following definition:

$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$	

n	е
1	
5	
10	
100	
1000	
etc.	

By substituting increasing values of n, we can see that the value of *e* appears to be approximately equal to ______.

Using a calculator, we can see that the value of *e* evaluated to 5 decimal places is ______.

- Logarithms with base e are referred to as "natural logarithms" and we write ln x which means $\log_e x$.
- Note that the laws of logarithms also apply to natural logarithms.

Example 1: Compare the Graphs of $y = e^x$ to $y = 2^x$ and $y = \ln x$ to $y = \log_2 x$

Label each function below with the appropriate equation.

Example 2: Identify Characteristics of Graphs of Natural Logarithmic Functions

Identify the following characteristics of the graph of each function:

- i. the equation of the asymptote
- ii. the domain and range
- iii. the y-intercept (to one decimal place)
- iv. the x-intercept (to one decimal place)
- a. $y = \ln(x-5) 4$
- b. $y = \ln(-(x-3)) + 1$

Solution:

- a. $y = \ln(x-5) 4$
 - i) Visualize the transformations of the graph of $y = \ln x$:

	The graph of $y = \ln x$ has been					
	T۲	nerefore the equation of the		asymptote is		
	ii)	Domain:	Range:			
	iii)	y-intercept:				
	iv)	x-intercept:				
b. <i>y</i>	 y = ln(-(x - 3)) + 1 i) Visualize the transformations of the graph of y = ln x: 					
	The graph of $y = \ln x$ has been					
	Th	nerefore the equation of the		asymptote is		
	ii)	Domain:	Range:			
	iii)	y-intercept:				
	iv)	x-intercept:				

Pre-Calculus 12A

Example 3: Evaluate Expressions Containing Natural Logarithms

Evaluate each expression.

a. $4\ln e + 5\ln 1 - \ln e^3$ b. $e^{\ln 12 - 3\ln 2}$

Solution:

a. $4\ln e + 5\ln 1 - \ln e^3$

b. $e^{\ln 12 - 3\ln 2}$

Example 4: Solve Natural Logarithmic Equations

Solve the following equations.

a. $\ln x = 2\ln 4 + \ln 3$ b. $3\ln 2x + 4 = 10$ c. $6 + 5e^{2x} = 21$ d. $\log_2 e^{-4x} = 5$

Solution:

$3\ln 2x + 4 = 10$	$6+5e^{2x}=21$	$\log_2 e^{-4x} = 5$
	$3\ln 2x + 4 = 10$	$3\ln 2x + 4 = 10 \qquad 6 + 5e^{2x} = 21$

Example 5: Solve a Problem Using Natural Logarithms

The temperature, T, in degrees Celsius, of a cup of hot chocolate t minutes after it is made is given by the equation $T(t) = 92e^{-0.06t}$.

- a. Calculate the temperature of the hot chocolate 8 minutes after it is poured.
- b. How long will it take the hot chocolate to cool to 50°C?

Solution:

- a. Substitute t = 8 into the equation and solve for T.
- b. Substitute T = 50 into the equation and solve for t.